Oh! They don’t mean that black holes must come in perfect pairs! The headline makes it sound like it’s about wormholes across vast distances. No! What they’ve found is a stable “orbit” solution for the two-body problem. Normally when you place two bodies anywhere in an empty universe, they will gravitate towards each other until they collide. But in a universe with dark energy, there is some perfect distance between them, where the accelerating expansion perfectly counterbalances the accelerating attraction. They’ve used general relativity math to actually calculate such an arrangement.
The “stable” orbit in this case is the same kind of stable as a pencil balanced on its sharp tip - if it tilts even slightly one way it will fall out of control. Although they tantalize the idea that they might be able to make it truly stable against small perturbations once they finish their spinning black hole solution.
I would like to have known some specific numbers examples! Like if you have as much dark energy as our universe, and two 10-solar-masses stellar black holes, how far apart would that be? Is it like 1Ly or 1MLy? How far for two 10-million-solar masses supermassive black holes? The formulas they created should give the exact answer but I am not skilled enough to substitute the correct numbers for the letters.
They have quite big plans, but almost 14. Million € on hand. I hope they manage to achieve their goal.
We produce for the first time high-resolution multi-colour movies with the EHT combined with new telescopes probing the variable extremes of the electromagnetic spectrum (e.g. CTA, MeerKAT/SKA1). The data are analysed and interpreted with innovative models finally combining micro- and macrophysics. The PIs bring together complementary expertise over the entire black hole mass scale in radio imaging and multi-wavelength monitoring, astroparticle physics, and theoretical modelling to bear on the problem. This is accompanied by four major investments: construction of a new mm-wave telescope in Africa enabling full dynamical imaging of black holes with the EHT, new model development, supercomputing hardware, and a vibrant team of young scientists to help develop a new, truly universal black hole paradigm.
If it can be infinitely dense inside a black hole, doesn’t that mean the scale doesn’t matter and that the ‘inside’ is pretty much it’s own whole universe with different physics rules?
phys.org
Ważne