I get migraines or just started too. But never get head aches. Migraines for me just make light too overwhelming to look at but it isn’t pain. It’s almost confusion it causes me.
If Constellation on Apple TV is right, then it’s an indication that the person has become quantum entangled with their alternative self in another universe.
Good show btw if you are looking for something more psychological with a sci-fi background.
They mention this in the article, but the physiology would suggest this is related to CSF/blood pooling in low G.
Taking it a step further, I bet this has a similar mechanism to IIH or the high pressure headaches you get with obstructive hydrocephalus. CSF is supposed to drain down via a relatively passive system. Without G to regulate this I can envision that you’d essentially develop the same physiology as someone with IIH (too much CSF).
Really interesting. A good example of how we have no idea what insane health things we are going to experience with space travel, but also how space travel may shed insight on treatments for other conditions with similar mechanisms we experience in a gravity well.
Haven’t this is interesting because I’ve always wondered how evolution would happen when we finally colonize in low g environs. Maybe char was on to something when he said our souls are weighed down by gravity.
So, there’s nothing in universe that is longer than “soon”. This prediction of going nova this year, only means it already happened but you can’t see it yet. And since it’s going super nova, that means entire even will be boring anyway. You’ll see a white dot that will increase in intensity during this year and then fade away equally slowly.
For people wondering about dates, there are none. Just like Beetlejuice is expected to explode soon™, that actually means 3000-10000+ years of waiting. So don’t get your hopes up. Out lives are but a blink in universe. All you can do is be diligent and watch it constantly. Doesn’t mean you’ll see much either since at peak magnitude of 2.5 it will be dim enough that you’ll need telescope to see it.
Nova, not supernova. Novas happen multiple times. Supernova do not but it doesn’t say supernova. Soon, as in within the next 6 months since its following a cycle that happened about 80 and 160 years ago.
Visible with unaided eyes for several days (but still dimmer than about 120 stars in the sky), and with binoculars for about a week, according to NASA.
On 20 April 2016, the Sky and Telescope website reported a sustained brightening since February 2015 from magnitude 10.5 to about 9.2. A similar event was reported in 1938, followed by another outburst in 1946.[20] By June 2018, the star had dimmed slightly but still remained at an unusually high level of activity. In March or April 2023, it dimmed to magnitude 12.3.[21] A similar dimming occurred in the year before the 1945 outburst, indicating that it will likely erupt between March and September 2024.
And if I’m interpreting some of the other content correctly, it’ll come and go in one night? Maybe someone who knows more about these can confirm or correct me.. See update below.
Also …
Even when at peak magnitude of 2.5, this recurrent nova is dimmer than about 120 stars in the night sky.
Once its brightness peaks, it should be visible to the unaided eye for several days and just over a week with binoculars before it dims again, possibly for another 80 years.
Reminds me of when Betelgeuse, the orange upper star of Orion, went dim in 2020. Lots of amateur reports on its brightness, 3x per night, for a few months waiting for it to go nova. It settled down a bit before disappearing behind the sun for the season and came back just fine. It was kinda fun to monitor, but soooo many false alarms from people trying to call it first
That is fascinating, I want to know, is there any way to prevent this during assembly? Even with extreme clean room protocols! Does it happen with other telescopes?! Down the rabbit hole, I must go.
Wildass hypothesis I just pulled out of my ass with an undergraduate degree in applied physics: maybe interaction with particles emerging from quantum vacuum?
Okay, that sounds like great technobabble. I’m going to watch star trek now ;)
It’s probably not that the light is losing energy it’s just that the distance it travels over time (the time we “know” is supposed to take for a given distance) appears compressed because of unknown/unseen gravitational forces.
Think of it like this: If there were only one star in the universe and it emits a particle of light we could calculate the distance it would travel over time. Yet we know that star will still have a gravitational effect on that light… No matter how far away it gets.
That’s what they mean by light “losing energy”. Is the energy actually “lost”? Not really. Is this slowing (aka appearance of lost energy) caused by dark energy/dark matter or something more fundamental like spacetime itself being stretched or compressed due to the gravity of astronomical objects we can see or “dark matter”/“dark energy” or… ? We don’t really know for certain yet!
It’s probably not that the light is losing energy it’s just that the distance it travels over time (the time we “know” is supposed to take for a given distance) appears compressed because of unknown/unseen gravitational forces.
This doesn’t seem to be at all what tired light proposes though. What you’re explaining sounds like red-shift due to an expanding universe. From what I can tell they claim it actually loses energy through interaction with “other things” in the universe.
This doesn’t answer the question in the context of this theory, but the current understanding is that light does lose energy as it travels through expanding space. As the space it’s in expands, the wavelength gets longer, and the energy goes down. It doesn’t go anywhere; energy just isn’t conserved in an expanding space-time.
If the light loses energy, then it must surely lose it to something? And if your last point that energy isn’t being conserved in our universe, in which case we are either in some deep shit with the first law of thermodynamics, or our universe isn’t an isolated system.
The thing about photons is that they redshift, losing energy as space expands. If we keep track of a certain fixed number of photons, the number stays constant while the energy per photon decreases, so the total energy decreases.
Ok. Smarter people probably thought of this, and probably found my hypothesis to be impossible. But what if… It is the the other way around. What if photons are losing energy because they are expanding spacetime. Like tiny little springs expanding out.
Further into the article he says that, "It would be irresponsible of me not to mention that plenty of experts in cosmology or GR would not put it in these terms. We all agree on the science; there are just divergent views on what words to attach to the science. In particular, a lot of folks would want to say “energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.” "
So energy is conserved on the whole, it’s just not conserved if you consider photons apart from their greater context.
The energy is actually not conserved across the universe in general relativity, as it is currently understood. Conversation of energy is due to the time symmetry, which the expansion of space breaks.
BTW, thanks! This comment sent me down a fascinating rabbit hole. It had simply never occurred to me that energy conversation didn’t apply in an expanding universe!
“Energy is conserved in general relativity, it’s just that you have to include the energy of the gravitational field along with the energy of matter and radiation and so on.”
Man, lots of people in this thread seem happy to accept any wild, physics-breaking idea rather than accept that there’s just a bunch of matter we can’t see.
I think it goes beyond not being able to “see” it and goes to we can’t detect it at all. Doesn’t dark matter just fill in the mathemagical holes with some numbers to make it all work?
We can detect its gravitational influence, as it interacts via gravity. The issue being that gravity is a weak force, and so there’s a lot of room for speculation.
But there is a lot of evidence backing up dark matter existing. But it’s not definitive yet.
I get that but it still sounds woo-woo since we can’t directly detect it. I’m not naysaying since I realize it’s the best we have and I’m not smart enough to come up with anything better.
I mean, I guess it depends on what you mean by “directly detect”. We measure neutrinos by having photoreceptors in huge tanks of very pure water deep under old salt mines… which hardly seems more direct than looking at where galaxies and stars are moving and calculating the gravitational pull and noticing that something is missing…
Dark matter is matter that we infir to exist only on its gravitational effects. We’ve observed its existence by the fact that it seems to clump up in the middle of two massive super-solar structures following a collision.
We can indirectly detect dark matter thru gravitational lensing. That is how NASA created this map showing the actual locations of dark matter in tinted blue.
Nope. No. Nuh-uh. Stop fucking up this planet, then we can talk. I’m drawing a line in the sand, I’m going to become an eco-terrorist if I see a fucking Coca-Cola ad when I look into the night sky.
All I think of is the movie, The Time Machine. Spoiler, the main character goes forward in time and sees the moon breaking apart, causing a collapse of civilisation.
astronomy
Aktywne
Magazyn ze zdalnego serwera może być niekompletny. Zobacz więcej na oryginalnej instancji.